Edgar Gasperín García

Edgar Gasperín García, Instituto Superior Técnico

Linear zero-rest-mass fields generically develop logarithmic singularities at the critical sets where spatial infinity meets null infinity. Friedrich's representation of spatial infinity is ideally suited to study this phenomenon. These logarithmic singularities are an obstruction to the smoothness of the zero-rest-mass field at null infinity and, in particular, to peeling. In the case of the spin-2 field it has been shown that these logarithmic singularities can be precluded if the initial data for the field satisfies a certain regularity condition involving the vanishing, at spatial infinity, of a certain spinor (the linearised Cotton spinor) and its totally symmetrised derivatives. In this article we investigate the relation between this regularity condition and the staticity of the spin-2 field. It is shown that while any static spin-2 field satisfies the regularity condition, not every solution satisfying the regularity condition is static.

This seminar is joint with CENTRA, and will take place on the Physics Department (advanced studies room, 2nd floor).